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Even-hole-free graphs

I H is an induced subgraph of G if H can be obtained from G
by deleting vertices

Figure: A graph, an induced subgraph, and a non-induced subgraph

I G is H-free if no induced subgraph of G is isomorphic to H

I When F is a family of graphs, F-free means H-free, ∀H ∈ F
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Even-hole-free graphs

I Even hole: induced cycle of even length (i.e. no chord in the
cycle)

I G is even-hole-free means G does not contain an even hole
I Even-hole-free: chordal graphs, complete graphs
I Not even-hole-free:

Figure: Theta and prism
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Motivation

I Relation to perfect graphs (G is perfect if for every induced
subgraph H of G , χ(H) = ω(H))

EHF graphs Perfect graphs

Basic
graphs

cliques, holes bipartite, bipartite,

long pyramids, L(bipartite), L(bipartite)
nontrivial basic doubled graphs

Cutsets
2-join, clique cutset, 2-join, 2-join

star cutset homogeneous pair,
balanced skew partition

Polynomial
α, χ

? YES
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Tree-width (intuitively)

Tree decomposition

b, d b, e c, f c, g c, h

a, ca, b

ge f hd

cb

a

I Tree decomposition of G : “gluing” the pieces of subgraphs of
G in a tree-like fashion
I width of T = the size of the largest bag - 1
I tree-width of G : the minimum over the width of tree

decomposition of G
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Algorithmic use of tree-width

Theorem (Courcelle, 1990)

Every graph property definable in the monadic second-order logic
(MSO) formulas can be decided in linear time on class of graphs of
bounded tree-width.

Some graph problems expressible in MSO:

I maximum independent set, maximum clique, coloring
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Which even-hole-free graphs have bounded tree-width?

Observation: The tree-width of the class is unbounded

I Planar ehf: tw ≤ 49 [Silva, da Silva, Sales, 2010]

I Pan-free ehf: tw ≤ 1.5ω(G )− 1 [Cameron, Chaplick, Hoàng, 2015]

I K3-free ehf: tw ≤ 5 [Cameron, da Silva, Huang, Vušković, 2018]

I Cap-free ehf: tw ≤ 6ω(G )− 1 [Cameron, da Silva, Huang,
Vušković, 2018]

Figure: Pan, triangle, and cap
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Even-hole-free graphs with unbounded tree-width

I Diamond-free ehf has unbounded rank-width [Adler, Le, Müller,

Radovanović, Trotignon, Vušković, 2017]

Figure: A diamond-free ehf graph with large rank-width
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Even-hole-free graphs with unbounded tree-width

Do even-hole-free graphs of bounded ω have bounded tw?
[Cameron, Chaplick, Hoàng, 2018]

I No, because K4-free even-hole-free graphs have unbounded
tree-width [S., Trotignon, 2019]
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Even-hole-free graphs with unbounded tree-width
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I The graphs have large degree and contain large clique minor
clique minor: pairwise adjacent connected subgraphs

Question: Are these two conditions necessary?
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Main questions

I What is the tree-width of even-hole-free graphs with no clique
minor?

I It is bounded [Aboulker, Adler, Kim, S., Trotignon, 2020]

I What is the tree-width of even-hole-free graphs with bounded
maximum degree?

I We prove partial results (for ∆ = 3 and a subclass of ehf
graphs with ∆ = 4)

I It is bounded [Abrishami, Chudnovsky, Vušković, 2020]
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1st part: even-hole-free graphs with no H-minor

Theorem (Aboulker, Adler, Kim, S., Trotignon, 2020)

(Theta, prism)-free graphs with no H-minor for some graph H
have bounded tree-width.

Theorem (induced-wall theorem for H-minor-free graph)

∀H, if G is H-minor-free with tw(G ) ≥ fH(k), then G contains a
(k × k)-wall (possibly subdivided) or the line graph of a chordless
(k × k)-wall (or call it co-wall) as an induced subgraph.
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Even-hole-free graphs with no H-minor

Theorem (induced-wall theorem for H-minor-free graph)

∀H, if G is H-minor-free with tw(G ) ≥ fH(k), then G contains a
(k × k)-wall (possibly subdivided) or the line graph of a chordless
(k × k)-wall (or call it co-wall) as an induced subgraph.

Figure: A (3× 3)-wall and the (3× 3)-co-wall
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Even-hole-free graphs with no H-minor
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Even-hole-free graphs with no H-minor

Theorem (Fomin, Golovach, Thilikos, 2011)

For every H and an integer k , there exists a function fH(k) s.t. for
every connected H-minor free graph G with tw(G ) ≥ fH(k), G
contains either Γk or Πk as a contraction.

Figure: Γ6 and Π6

G ′ is a contraction of G if G ′ can be obtained by contracting edges of G
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”Induced-wall theorem”: proof 1 (when tw is large)

Let G be s.t. tw(G ) ≥ fH(k), then G contains Γk or Πk

Figure: We can extract a triangulated grid
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”Induced-wall theorem”: proof 1 (when tw is large)

Let G be s.t. tw(G ) ≥ fH(k), then G contains Γk or Πk

contraction

Figure: Consider the graph containing the contracted triangulated grid
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”Induced-wall theorem”: proof 1 (when tw is large)

Let G be s.t. tw(G ) ≥ fH(k), then G contains Γk or Πk

contraction
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Figure: For some constant size of the triangulated grid, we find forks and
semiforks
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”Induced-wall theorem”: proof 1 (when tw is large)

Let G be s.t. tw(G ) ≥ fH(k), then G contains Γk or Πk

Figure: Combining them, we get a large stone wall
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”Induced-wall theorem”: proof 2 (cleaning stone wall)

Theorem
∀r ≥ 2 integer, ∃ n = n(r) integer s.t. every (n × n)-stone wall
contains an (r × r)-wall or the (r × r)-co-wall as induced subgraph.

Figure: From an (n × n)-stone wall W , contract each triangle into a
vertex, we get wall W ′
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”Induced-wall theorem”: proof 2 (cleaning stone wall)

Theorem
∀r ≥ 2 integer, ∃ n = n(r) integer s.t. every (n × n)-stone wall
contains an (r × r)-wall or the (r × r)-co-wall as induced subgraph.

Figure: Color the contracted vertex with red and the other
degree-3-vertices with green
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”Induced-wall theorem”: proof 2 (cleaning stone wall)

Theorem
∀r ≥ 2 integer, ∃ n = n(r) integer s.t. every (n × n)-stone wall
contains an (r × r)-wall or the (r × r)-co-wall as induced subgraph.

A B

Figure: Build the complete bipartite graphs with partitions the horizontal
paths and the vertical paths
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”Induced-wall theorem”: proof 2 (cleaning stone wall)

Theorem
∀r ≥ 2 integer, ∃ n = n(r) integer s.t. every (n × n)-stone wall
contains an (r × r)-wall or the (r × r)-co-wall as induced subgraph.

A B

Figure: Each V-path and H-path intersect at two vertices, except the first
and the last H-paths
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”Induced-wall theorem”: proof 2 (cleaning stone wall)

Theorem
∀r ≥ 2 integer, ∃ n = n(r) integer s.t. every (n × n)-stone wall
contains an (r × r)-wall or the (r × r)-co-wall as induced subgraph.

A B

Figure: Edge-color the vertices of K·,· with red, green, blue, and yellow
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”Induced-wall theorem”: proof 2 (cleaning stone wall)

A B

Lemma (Beineke and Schwenk, 1975)

K·,· contains a large monochromatic complete bipartite subgraph

1. GREEN: we obtain a large wall

2. RED: we obtain a large co-wall (undoing the contractions)

3. BLUE or YELLOW: we obtain a large wall (by local rerouting
of the paths)
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2nd part: even-hole-free graphs of bounded degree

Conjecture (Aboulker, Adler, Kim, S., Trotignon, 2020)

Even-hole-free graphs with bounded degree have bounded
tree-width.

We prove the following cases:

I Subcubic even-hole-free graphs have tw ≤ 3

I (Even hole, pyramid)-free graphs with ∆ = 4 have bounded tw
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Structure theorem of subcubic even-hole-free graphs

Theorem (Aboulker, Adler, Kim, S., Trotignon, 2020)

Let G be a (theta, prism)-free subcubic graph. Then either:

I G is a basic graph; or

I G has a clique separator of size at most 2; or

I G has a proper separator.

a

b

proper separation

proper wheel pyramid

Kn, n ≤ 4 extended prism hole

cube

Figure: Basic graphs and proper separator
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Tree-width of subcubic even-hole-free graphs

Theorem (Aboulker, Adler, Kim, S., Trotignon, 2020)

Subcubic even-hole-free graphs have tree-width ≤ 3.

Sketch of proof.

I Every basic graph has tree-width at most 3

I “Gluing” along a clique and proper gluing preserve tree-width

+ =

+ =
a

b

a1

b2b1

a1

P1 P2

Dewi Sintiari Tree-width even-hole-free graphs



Tree-width of (even hole, pyramid)-free graphs with ∆ = 4

Theorem (S., Trotignon, 2020)

(Even hole, pyramid)-free graphs with ∆ = 4 have tw ≤ 4.

Dewi Sintiari Tree-width even-hole-free graphs



Tree-width of (even hole, pyramid)-free graphs with ∆ = 4

Keyproof:
If G is an (even hole, pyramid)-free graph with ∆(G ) ≤ 4, then:

I G is a basic graph; or

I G has a clique separator of size at most 3; or

I G has a proper separator for the class.
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Even-hole-free graphs of bounded degree

The general case of bounded maximum degree is proven!

Theorem (Abrishami, Chudnovsky, Vušković, 2020)

Even-hole-free graphs of bounded degree have bounded tree-width.
(This is actually proven for a superclass of ehf graphs.)

Approach: balanced separator + structural properties of the graphs
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Open problems

Motivation: grid-minor theorem of Robertson and Seymour

There is a function f such that if tw(G ) > f (k), then G contains
(as an induced subgraph) one of the following:

I a (k × k)-wall or its subdivision

I line graph of a subdivision of a (k × k)-wall

I a vertex of degree at least k
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Thank you for listening!
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