On the tree-width of even-hole-free graphs

Dewi Sintiari

LIP, ENS de Lyon
Joint work with Pierre Aboulker, Isolde Adler, Eun Jung Kim, Nicolas Trotignon

European Congress of Mathematics, Portorož, Slovenia June 23, 2021

Even-hole-free graphs

- H is an induced subgraph of G if H can be obtained from G by deleting vertices

Figure: A graph, an induced subgraph, and a non-induced subgraph

- G is H-free if no induced subgraph of G is isomorphic to H
- When \mathcal{F} is a family of graphs, \mathcal{F}-free means H-free, $\forall H \in \mathcal{F}$

Even-hole-free graphs

- Even hole: induced cycle of even length (i.e. no chord in the cycle)
- G is even-hole-free means G does not contain an even hole
- Even-hole-free: chordal graphs, complete graphs
- Not even-hole-free:

Figure: Theta and prism

Motivation

- Relation to perfect graphs (G is perfect if for every induced subgraph H of $G, \chi(H)=\omega(H))$

	EHF graphs	Perfect graphs
Basic graphs	cliques, holes long pyramids, nontrivial basic	bipartite, $\overline{\text { bipartite, }}$ L(bipartite), $\overline{\text { L(bipartite })}$ doubled graphs
Cutsets	2-join, star cutset	clique cutset, 2-join, $\overline{2-j o i n}$ homogeneous pair, balanced skew partition
Polynomial α, χ	?	

Tree-width (intuitively)

Tree decomposition

- Tree decomposition of G: "gluing" the pieces of subgraphs of G in a tree-like fashion
- width of $T=$ the size of the largest bag - 1
- tree-width of G : the minimum over the width of tree decomposition of G

Algorithmic use of tree-width

Theorem (Courcelle, 1990)
Every graph property definable in the monadic second-order logic (MSO) formulas can be decided in linear time on class of graphs of bounded tree-width.

Some graph problems expressible in MSO:

- maximum independent set, maximum clique, coloring

Which even-hole-free graphs have bounded tree-width?

Observation: The tree-width of the class is unbounded

- Planar ehf: $t w \leq 49$ [Silva, da Silva, Sales, 2010]
- Pan-free ehf: $t w \leq 1.5 \omega(G)-1$ [Cameron, Chaplick, Hoàng, 2015]
- K3-free ehf: $t w \leq 5$ [Cameron, da Silva, Huang, Vušković, 2018]
- Cap-free ehf: $\mathrm{tw} \leq 6 \omega(G)-1$ [Cameron, da Silva, Huang, Vušković, 2018]

Figure: Pan, triangle, and cap

Even-hole-free graphs with unbounded tree-width

- Diamond-free ehf has unbounded rank-width [Adler, Le, Müller, Radovanović, Trotignon, Vušković, 2017]

Figure: A diamond-free ehf graph with large rank-width

Even-hole-free graphs with unbounded tree-width

Do even-hole-free graphs of bounded ω have bounded tw?
[Cameron, Chaplick, Hoàng, 2018]

- No, because K_{4}-free even-hole-free graphs have unbounded tree-width [S., Trotignon, 2019]

Even-hole-free graphs with unbounded tree-width

- The graphs have large degree and contain large clique minor clique minor: pairwise adjacent connected subgraphs

Question: Are these two conditions necessary?

Main questions

- What is the tree-width of even-hole-free graphs with no clique minor?
- What is the tree-width of even-hole-free graphs with bounded maximum degree?

Main questions

- What is the tree-width of even-hole-free graphs with no clique minor?
- It is bounded [Aboulker, Adler, Kim, S., Trotignon, 2020]
- What is the tree-width of even-hole-free graphs with bounded maximum degree?
- We prove partial results (for $\Delta=3$ and a subclass of ehf graphs with $\Delta=4$)
- It is bounded [Abrishami, Chudnovsky, Vušković, 2020]

1st part: even-hole-free graphs with no H-minor

Theorem (Aboulker, Adler, Kim, S., Trotignon, 2020)
(Theta, prism)-free graphs with no H -minor for some graph H have bounded tree-width.

1st part: even-hole-free graphs with no H -minor

Theorem (Aboulker, Adler, Kim, S., Trotignon, 2020)
(Theta, prism)-free graphs with no H -minor for some graph H have bounded tree-width.

Theorem (induced-wall theorem for H -minor-free graph) $\forall H$, if G is H-minor-free with $t w(G) \geq f_{H}(k)$, then G contains a ($k \times k$)-wall (possibly subdivided) or the line graph of a chordless ($k \times k$)-wall (or call it co-wall) as an induced subgraph.

Even-hole-free graphs with no H -minor

Theorem (induced-wall theorem for H -minor-free graph) $\forall H$, if G is H-minor-free with $t w(G) \geq f_{H}(k)$, then G contains a ($k \times k$)-wall (possibly subdivided) or the line graph of a chordless ($k \times k$)-wall (or call it co-wall) as an induced subgraph.

Figure: A (3×3)-wall and the (3×3)-co-wall

Even-hole-free graphs with no H -minor

Theorem (induced-wall theorem for H -minor-free graph) $\forall H$, if G is H-minor-free with $t w(G) \geq f_{H}(k)$, then G contains a ($k \times k$)-wall (possibly subdivided) or the line graph of a chordless ($k \times k$)-wall (or call it co-wall) as an induced subgraph.

Figure: $\mathrm{A}(3 \times 3)$-wall and the (3×3)-co-wall

Even-hole-free graphs with no H -minor

Theorem (Fomin, Golovach, Thilikos, 2011)
For every H and an integer k, there exists a function $f_{H}(k)$ s.t. for every connected H-minor free graph G with $\operatorname{tw}(G) \geq f_{H}(k), G$ contains either Γ_{k} or Π_{k} as a contraction.

Figure: Γ_{6} and Π_{6}
G^{\prime} is a contraction of G if G^{\prime} can be obtained by contracting edges of G

"Induced-wall theorem": proof 1 (when tw is large)

Let G be s.t. $\operatorname{tw}(G) \geq f_{H}(k)$, then G contains Γ_{k} or Π_{k}

Figure: We can extract a triangulated grid

"Induced-wall theorem": proof 1 (when tw is large)

Let G be s.t. $\operatorname{tw}(G) \geq f_{H}(k)$, then G contains Γ_{k} or Π_{k}

Figure: Consider the graph containing the contracted triangulated grid

"Induced-wall theorem": proof 1 (when tw is large)

Let G be s.t. $\operatorname{tw}(G) \geq f_{H}(k)$, then G contains Γ_{k} or Π_{k}

fork

Figure: For some constant size of the triangulated grid, we find forks and semiforks

"Induced-wall theorem": proof 1 (when tw is large)

Let G be s.t. $\operatorname{tw}(G) \geq f_{H}(k)$, then G contains Γ_{k} or Π_{k}

Figure: Combining them, we get a large stone wall

"Induced-wall theorem": proof 2 (cleaning stone wall)

Theorem
$\forall r \geq 2$ integer, $\exists n=n(r)$ integer s.t. every $(n \times n)$-stone wall contains an ($r \times r$)-wall or the ($r \times r$)-co-wall as induced subgraph.

Figure: From an $(n \times n)$-stone wall W, contract each triangle into a vertex, we get wall W^{\prime}

"Induced-wall theorem": proof 2 (cleaning stone wall)

Theorem
$\forall r \geq 2$ integer, $\exists n=n(r)$ integer s.t. every $(n \times n)$-stone wall contains an ($r \times r$)-wall or the ($r \times r$)-co-wall as induced subgraph.

Figure: Color the contracted vertex with red and the other degree-3-vertices with green

"Induced-wall theorem": proof 2 (cleaning stone wall)

Theorem
$\forall r \geq 2$ integer, $\exists n=n(r)$ integer s.t. every ($n \times n$)-stone wall contains an ($r \times r$)-wall or the ($r \times r$)-co-wall as induced subgraph.

Figure: Build the complete bipartite graphs with partitions the horizontal paths and the vertical paths

"Induced-wall theorem": proof 2 (cleaning stone wall)

Theorem
$\forall r \geq 2$ integer, $\exists n=n(r)$ integer s.t. every $(n \times n)$-stone wall contains an $(r \times r)$-wall or the $(r \times r)$-co-wall as induced subgraph.

Figure: Each V-path and H-path intersect at two vertices, except the first and the last H-paths

"Induced-wall theorem": proof 2 (cleaning stone wall)

Theorem $\forall r \geq 2$ integer, $\exists n=n(r)$ integer s.t. every $(n \times n)$-stone wall contains an $(r \times r)$-wall or the $(r \times r)$-co-wall as induced subgraph.

Figure: Edge-color the vertices of $K_{\text {., }}$, with red, green, blue, and

"Induced-wall theorem": proof 2 (cleaning stone wall)

Lemma (Beineke and Schwenk, 1975)
$K_{\text {, , contains a large monochromatic complete bipartite subgraph }}$

1. GREEN: we obtain a large wall
2. RED: we obtain a large co-wall (undoing the contractions)
3. BLUE or YELLOW: we obtain a large wall (by local rerouting of the paths)

2nd part: even-hole-free graphs of bounded degree

Conjecture (Aboulker, Adler, Kim, S., Trotignon, 2020)
Even-hole-free graphs with bounded degree have bounded tree-width.

2nd part: even-hole-free graphs of bounded degree

Conjecture (Aboulker, Adler, Kim, S., Trotignon, 2020)
Even-hole-free graphs with bounded degree have bounded tree-width.

We prove the following cases:

- Subcubic even-hole-free graphs have $t w \leq 3$
- (Even hole, pyramid)-free graphs with $\Delta=4$ have bounded tw

Structure theorem of subcubic even-hole-free graphs

Theorem (Aboulker, Adler, Kim, S., Trotignon, 2020)
Let G be a (theta, prism)-free subcubic graph. Then either:

- G is a basic graph; or
- G has a clique separator of size at most 2; or
- G has a proper separator.

Figure: Basic graphs and proper separator

Tree-width of subcubic even-hole-free graphs

Theorem (Aboulker, Adler, Kim, S., Trotignon, 2020)
Subcubic even-hole-free graphs have tree-width ≤ 3.
Sketch of proof.

- Every basic graph has tree-width at most 3
- "Gluing" along a clique and proper gluing preserve tree-width

Tree-width of (even hole, pyramid)-free graphs with $\Delta=4$

Theorem (S., Trotignon, 2020)
(Even hole, pyramid)-free graphs with $\Delta=4$ have $t w \leq 4$.

Tree-width of (even hole, pyramid)-free graphs with $\Delta=4$

Keyproof:

If G is an (even hole, pyramid)-free graph with $\Delta(G) \leq 4$, then:

- G is a basic graph; or
- G has a clique separator of size at most 3; or
- G has a proper separator for the class.

Even-hole-free graphs of bounded degree

The general case of bounded maximum degree is proven!
Theorem (Abrishami, Chudnovsky, Vušković, 2020)
Even-hole-free graphs of bounded degree have bounded tree-width.
(This is actually proven for a superclass of ehf graphs.)
Approach: balanced separator + structural properties of the graphs

Open problems

Motivation: grid-minor theorem of Robertson and Seymour
There is a function f such that if $t w(G)>f(k)$, then G contains (as an induced subgraph) one of the following:

- a $(k \times k)$-wall or its subdivision
- line graph of a subdivision of a $(k \times k)$-wall
- a vertex of degree at least k

References

㵢
P．Aboulker，I．Adler，E．J．Kim，N．L．D．Sintiari，and N．Trotignon．
On the tree－width of even－hole－free graphs．
CoRR，abs／2008．05504， 2020.
國 T．Abrishami，M．Chudnovsky，and K．Vušković．
Even－hole－free graphs with bounded degree have bounded treewidth．
CoRR，abs／2009．01297， 2020.
圊
N．L．D．Sintiari and N．Trotignon．
（Theta，triangle）－free and（even hole， K_{4} ）－free graphs．Part 1 ：Layered wheels．
CoRR，abs／1906．10998， 2019.
\＃
K．Vušković．
Even－hole－free graphs：a survey．
Applicable Analysis and Discrete Mathematics， 2010.

Thank you for listening!

